

Vision

Quantum Al democratizes artificial intelligence by leveraging quantum computing and blockchain technology to create a decentralized network for Al development and deployment.

- Quantum-Powered Speed: 100-1000x faster than classical computing for specific AI tasks
- Enhanced Security: Post-quantum cryptography with zero-knowledge proofs
- **Decentralized Infrastructure**: Global network of quantum computing resources

Executive Summary

Technical Architecture

Quantum Computing Foundation

Quantum Al leverages quantum computing principles to accelerate Al computations:

$$|\psi
angle = \sum_{i=0}^{2^n-1} lpha_i |i
angle, \quad \sum_{i=0}^{2^n-1} |lpha_i|^2 = 1.$$

Quantum states enable exponential parallelism through superposition, allowing us to process multiple Al model parameters simultaneously.

Quantum Neural Networks

Our proprietary Quantum Neural Network architecture:

$$U(heta) = \prod_{l=1}^L \prod_{j=1}^n R_j^l(heta_j^l) \prod_{(i,j) \in E} CR_{ij}$$

Where:

- $R_{j}^{l}(\theta_{j}^{l})$ represents single-qubit rotations
- ullet CR_{ij} represents controlled operations between qubits
- ullet represents the trainable parameters

Quantum Advantage for Al

Classical Complexity

 $O(2^n)$

- Exponential scaling with problem size
- Limited by hardware constraints
- High energy consumption

Quantum Complexity

 $O(n^2)$

- Polynomial scaling with problem size
- Quantum parallelism
- Significant energy efficiency

Technical Architecture

Blockchain Integration

Quantum-Resistant Block Structure

```
Block {
  header: {
    prevHash: Hash,
    merkleRoot: Hash,
    timestamp: Timestamp
  },
  transactions: Transaction[],
  quantumProof: LatticeSignature
}
```

Utilizes post-quantum cryptographic algorithms (CRYSTALS-Dilithium) to ensure security against quantum attacks.

Core Registry Contract

```
// Key mappings for quantum resources
mapping(address ⇒ Computer) public computers;
mapping(uint256 \Rightarrow AIModel) public models;
// Token and stake management
IERC20 public qaiToken;
uint256 public requiredStake;
// Events for network activity
event ComputerRegistered(address provider);
event ModelRegistered(uint256 modelId);
```

Consensus Mechanism

Quantum-Enhanced Proof of Stake (QPoS)

$$P(i) = rac{s_i \cdot q_i}{\sum_{j \in V} s_j \cdot q_j}$$

Where:

- ullet P(i) is the probability of validator i being selected
- ullet s_i is the stake of validator i
- ullet q_i is the quantum computing power contributed by validator i
- ullet V is the set of all validators

Quantum Al Models

Q-Transformer Architecture

Quantum Attention Mechanism

$$ext{Attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d_k}}\otimes U_{ ext{quantum}}
ight) V$$

Where $U_{
m quantum}$ is a unitary quantum operation that enhances the attention mechanism through quantum entanglement.

Q-Recommender System

Quantum Matrix Factorization

$$\min_{P,Q} \sum_{(u,i) \in \kappa} (r_{ui} - p_u^T q_i)^2 + \lambda (||p_u||^2 + ||q_i||^2)$$

Enhanced with quantum amplitude estimation to achieve quadratic speedup in optimization.

Quantum Al Models

Tokenomics

\$QAI Token Utility

Governance

- Protocol parameter voting
- Model approval process
- Network upgrades

Access

- Computing resource allocation
- Model usage rights
- Premium features

Incentives

- Quantum computing providers
- Al model developers
- Validators and node operators

Value Capture

- 5% buy/sell tax
- 95% liquidity pool
- Total supply: 100M tokens

Tokenomics

Tokenomics

Token Utility Flow

Tokenomics

Roadmap

Development Timeline

Phase	Timeline	Milestones
Alpha	Q2 2025	Testnet launchInitial quantum modelsDeveloper SDK
Beta	Q4 2025	- Mainnet launch- Quantum validator network- First dApps
V1.0	Q2 2026	Full quantum integrationCross-chain compatibilityEnterprise solutions
V2.0	Q4 2026	- Quantum AI marketplace- Advanced QNN models- Governance DAO

